A new elementary algorithm for proving q-hypergeometric identities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new elementary algorithm for proving q-hypergeometric identities

We give a fast elementary algorithm to get a small number n1 for an admissible q-properhypergeometric identity ∑ k F(n, k) = G(n), n ≥ n0 such that we can prove the identity by checking its correctness for n (n0 ≤ n ≤ n1). For example, we get n1 = 191 for the q-Vandermonde-Chu identity, n1 = 70 for a finite version of Jacobi’s triple product identity and n1 = 209 for an identity due to L.J. Rog...

متن کامل

qMultiSum--a package for proving q-hypergeometric multiple summation identities

A Mathematica package for finding recurrences for q-hypergeometric multiple sums is introduced. Together with a detailed description of the theoretical background, we present several examples to illustrate its usage and range of applicability. In particular, various computer proofs of recently discovered identities are exhibited.

متن کامل

Elementary Derivations of Identities for Bilateral Basic Hypergeometric Series

We give elementary derivations of several classical and some new summation and transformation formulae for bilateral basic hypergeometric series. For purpose of motivation, we review our previous simple proof (“A simple proof of Bailey’s very-well-poised 6ψ6 summation”, Proc. Amer. Math. Soc., to appear) of Bailey’s very-well-poised 6ψ6 summation. Using a similar but different method, we now gi...

متن کامل

An algorithm for proving identities with Riordan transformations

The problem we consider in the present paper is how to find the closed form of a class of combinatorial sums, if it exists. The problem is well known in the literature, and is as old as Combinatorial Analysis is, since we can go back at least to Euler’s time. More recently, Riordan has tried to give a general approach to the subject, proposing a variety of methods, many of which are related to ...

متن کامل

An algorithmic proof theory for hypergeometric (ordinary and <Emphasis Type="Italic">q </Emphasis>) multisum/integral identities

It is shown that every 'proper-hypergeometric ' multisum/integral identity, or q-identity, with a fixed number of summations and/or integration signs, possesses a short, computer-constructible proof. We give a fast algorithm for finding such proofs. Most of the identities that involve the classical special functions of mathematical physics are readily reducible to the kind of identities treated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2003

ISSN: 0747-7171

DOI: 10.1016/s0747-7171(02)00136-0